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We discuss the dynamics of approximate adiabatic invariants in several nonlinear models being related to the
physics of Bose-Einstein condensates �BECs�. We show that the nonadiabatic dynamics in Feshbach resonance
passage, nonlinear Landau-Zener �NLZ� tunneling, and BEC tunneling oscillations in a double well can be
considered within a unifying approach based on the theory of separatrix crossings. The separatrix crossing
theory was applied previously to some problems of classical mechanics, plasma physics, and hydrodynamics,
but has not been used in the rapidly growing BEC-related field yet. We derive explicit formulas for the change
in the action in several models. Extensive numerical calculations support the theory and demonstrate its
universal character. We also discovered a nonlinear phenomenon in the NLZ model which we propose to call
separated adiabatic tunneling.
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I. INTRODUCTION

Adiabatic invariance �1� is very important in many fields
of physics. In the last decade, there has been a great deal of
interest in the physics of Bose-Einstein condensates �BECs�
�2–7� among scientists from several scientific fields. Pres-
ently BEC research is at the crossing point of atomic, mo-
lecular, and optical �AMO� science, statistical mechanics and
condensed matter physics, nonlinear dynamics, and chaos.
The discussion we present here is related to the interplay
between nonlinearity and nonadiabaticity in BEC systems.
The relation between quantum transitions and change in the
classical action of a harmonic oscillator has long been known
�8,9�. BECs bring nonlinearity into a quantum world. BEC
dynamics can often be described within the mean-field ap-
proximation; finite-mode expansions produce nonlinear mod-
els where a variety of phenomena common to classical non-
linear systems happen. We consider two kinds of nonlinear
phenomena here: destruction of adiabatic invariance at sepa-
ratrix crossings and probabilistic captures in different do-
mains of phase space.

A conceptual phenomenon of classical adiabatic theory is
the destruction of adiabatic invariance at separatrix crossings
which is encountered, in particular, in plasma physics and
hydrodynamics and classical and celestial mechanics
�10–22�. The phenomenon is very important for BEC phys-
ics: we consider here nonlinear two-mode models related to
tunneling between coupled BECs in a double well �23�, non-
linear Landau-Zener tunneling �24,25�, and Feshbach reso-
nance passage in atom-molecule systems �26–28�. Nonlinear
two-mode models were extensively studied previously
�sometimes beyond the mean-field approximation
�23–25,29–44��, and destruction of adiabaticity was dis-
cussed already in �24–26�; still, there are regimes of motion
that were not analyzed in these papers from the point of view
of nonadiabatic behavior—that is, when initial populations
of both modes are not zero �or very small�, but finite. We
presented some of our results on that theme in �27,28�; nev-

ertheless, destruction of adiabatic invariance has not been
studied systematically in BEC-related models yet. The action
is an approximate adiabatic invariant in a classical Hamil-
tonian system that depends on a slowly varying parameter
provided a phase trajectory stays away from separatrices of
the unperturbed �frozen at a certain parameter value� system.
If this condition is not met, adiabaticity may be destroyed.
As the parameter varies, the separatrices slowly evolve on
the phase portrait. A phase trajectory of the exact system may
come close to the separatrix and cross it. The general theory
of the adiabatic separatrix crossings �10� predicts universal
behavior of the classical action �described in a greater detail
in the main text�. In particular, at the separatrix crossing the
action undergoes a quasirandom dynamical jump, which is
very sensitive to initial conditions and depends on the rate of
change of the parameter. The asymptotic formula for this
jump was obtained in �11–13�. Later, the general theory of
adiabatic separatrix crossings was also developed for slow-
fast Hamiltonian systems �10,17� and was applied to certain
physical problems �see, for example, �16,18–20��. It was also
noticed that nonlinear Landau-Zener �NLZ� tunneling mod-
els constitute a particular case for which the general theory
can be applied �27,28�. Beside the quasirandom jumps of
adiabatic invariants, there is another important mechanism of
stochastization in BEC-related models: scattering on an un-
stable fixed point with a capture into different regions of
phase space after a separatrix crossing �45–47�. Here sto-
chastization happens due to quasirandom splitting of phase
flow in different regions of phase space at the crossing. A
rigorous definition of such probabilistic phenomena in dy-
namical systems was given in �48�. The probabilistic capture
is important in problems of celestial mechanics �10�, but it
was also investigated in some problems of plasma physics
and hydrodynamics �16�, optics �18�, classical billiards with
slowly changing parameters, and other classical models �19�.
As shown in �47�, the combination of the two phenomena
leads to a dephasing in the dynamics of globally coupled
oscillators modeling coupled Josephson junctions. However,
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it seems that the probabilistic capture mechanism was not
discussed at all in relation to BEC models yet. We discovered
that in a nonlinear Landau-Zener model such a mechanism
may take place, and it leads to a new phenomenon �in the
context of the model� which we propose to call separated
adiabatic tunneling.

Let us review the models being considered in the present
paper in more concrete terms. The nonlinear two-mode
model introduced in �23� describes BEC tunneling oscilla-
tions in a double well as that of a nonrigid pendulum. In the
case of an asymmetric double well, the effective classical
Hamiltonian is

H = − �w +
�w2

2
− �1 − w2 cos � , �1�

where w and � are the population imbalance and phase dif-
ference between the two modes and the parameters � and �
represent the potential difference between the wells and non-
linearity, correspondingly. The same Hamiltonian appears in
a nonlinear Landau-Zener model �24,25�. As one slowly
sweeps �, say, from a large positive to a large negative value,
a change in the mode populations is determined by the
change in the classical action �since at large ��� classical
action depends linearly on w�. This provides an interesting
link between the fundamental issue of classical mechanics,
dynamics of approximate adiabatic invariants �classical ac-
tions�, and nonadiabatic transitions in quantum many-body
systems. The dynamics of classical actions in nonlinear sys-
tems is, however, a very complicated issue �10�. Some analy-
sis of the NLZ model was done in �24,25�. In �25� so-called
subcritical ���1�, critical ��=1�, and supercritical ���1�
cases were defined. However, only the case of zero initial
action was considered—that is, a vanishingly small initial
population in one of the states. We concentrate on the case of
finite initial action and supercritical case. In the supercritical
case, the most striking phenomenon from the point of view
of physics is the so-called nonzero adiabatic tunneling �non-
zero AT�. In terms of the theory of separatrix crossings, it is
caused by the geometric jump in the action at the separatrix
crossing. Mathematically, it is a very simple issue: as a phase
point leaves a domain bounded by a separatrix of the unper-
turbed system and enters another domain, its action under-
goes a “geometric” change proportional to the difference in
areas of the two domains �49�. The gist of separated adia-
batic tunneling �separated AT� that we found is as follows.
The separatrix divides the phase portrait into three domains
G1,2,3 �Fig. 9�. In case at the moment of the separatrix cross-
ing the areas of G1,2 grow, the phase point leaving the third
domain G3 �with decreasing area� can be captured in either
of the two growing domains. A bunch of trajectories with
close initial actions Ii will be “split” into two bunches with
two different final actions If

1,2. It is possible to calculate the
probability for a phase point to come to either of the two
bunches �we calculated it in Appendix B and compared the
analytical prediction with the numerical result in Fig. 11�.
The possible physical applications of the nonzero AT phe-
nomenon have been extensively discussed �for example,
�24,25�: the wave packet in an accelerated optical lattice

should undergo nonzero tunneling in the adiabatic limit when
nonlinearity is large enough, although no experimental evi-
dence is available yet�. In relation to BEC oscillations in an
asymmetric double well, the corresponding physical effect is
a �obvious� drastic change in the amplitude of oscillations
when the regime of motion is changed from self-trapped to
complete oscillations due to a slow change of parameters. In
the case of separated AT, the effect for the asymmetric
double well may look like this: the asymmetry between the
wells is slowly changed; the regime of motion is changed
from self-trapped to complete oscillations and then back to
self-trapped. But the final state is quasirandom: a system has
the “choice” of two different final states. For a set of experi-
mental realizations with close initial conditions, one can de-
fine the “probability” for a system to come to either of the
two states. While such an experimental realization seems to
be even less realistic than nonzero AT, conceptually it is a
very interesting phenomenon worth discussing: the probabil-
ity is of purely classical origin. An analogous interpretation
can be done for BECs experiencing NLZ tunneling in the
optical lattice. Although the phenomenon looks similar to the
nonzero AT described in �24,25�, its mathematical back-
ground is very much different and not so straightforward; it
is a particular case of probabilistic phenomena in dynamical
systems being defined in �48�.

We also derive a formula for the jump of the adiabatic
invariant �Eq. �23�� in the symmetric well case ��=0� and
check it numerically �for the asymmetric case, the corre-
sponding formula has both terms of order � and � ln ��. As a
physical application of this jump, one can imagine an experi-
ment with BEC oscillations in a double well, with the poten-
tial barrier between the wells being slowly raised and then
slowly decreased back to its initial position. The system will
not return back to its initial state. Within the mean-field two-
state model, the difference between the initial and final os-
cillations is caused by the change in the adiabatic invariant
�of course, in a real system many other complications arise�.
Such kinds of experiments are feasible �50,51�.

Similar nonadiabatic phenomena arise in coupled atom-
molecular systems. Here, in the mean-field limit it is possible
to construct two-mode models based on the all-atom and
all-molecule modes and their coherent superpositions.
�52,53� The two-mode model describing a degenerate gas of
fermionic atoms coupled to bosonic molecules was consid-
ered in �26–28� �the same model enables us to describe
coupled atomic and molecular BECs, so we call it the two-
mode AMBEC model�. The system is reduced to the classical
Hamiltonian

H = − ����w + �1 − w��1 + w cos � , �2�

where w denotes population imbalance between atomic and
molecular modes and � is the �slowly changing� detuning
from the Feshbach resonance. As � sweeps from large posi-
tive to negative values, the system is transferred from the
all-atom w=1 mode to the all-molecule w=−1 mode. The
final state of the system contains the nonzero atomic remnant
fraction, which can be calculated as a change in the classical
action in the model �2�, and scales as a power law of the
sweeping rate. The model was introduced in �26� in an at-
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tempt to describe recent experiments on Feshbach resonance
passage �54–57�, and some power laws were calculated there
and compared with experimental data. For the case of non-
zero initial molecular fraction, the power law was also cal-
culated in �27,28� according to the general theory. We care-
fully check numerically this �linear� power law in Sec. II B.
It is important to note that the model gives 100% conversion
efficiency in the adiabatic limit, while in the experiments
finite conversion efficiency has been seen. In Sec. II C we
present a brief analysis of a more general model, which has
an analog of nonzero AT �leading to finite conversion effi-
ciency in the adiabatic limit�. In the more general version,
s-wave interactions were taken into account, so the Hamil-
tonian looks like

H = − �w + �w2 + �1 − w��1 + w cos � . �3�

Here, the phase portraits can have more complicated struc-
ture and the passage through the separatrix can be accompa-
nied by the geometric jump in the action, leading to a non-
zero remnant fraction even in the adiabatic limit.

In Sec. III, the nonlinear two-mode model �1� for two
coupled BECs is considered. For brevity, we call this model
the two-mode atomic BEC �ABEC� model. The separated AT
is demonstrated in the end of the section.

Section IV contains concluding remarks. In Appendix A
we described the adiabatic and improved adiabatic approxi-
mations. In Appendix B, a derivation of the formula for
probabilities in separated AT is presented.

The most interesting new results of the paper are the
following.

�i� Extensive numerical tests of the formula �12� for the
dynamical jump in the adiabatic invariant of the atom-
molecule system �Sec. II B�. The formula is based on Eq.
�10� which is obtained elsewhere �27,28�.

�ii� Suggested mechanism �analog of nonzero AT, Sec.
II C, Fig. 2� leading to finite conversion efficiency in atom-
molecule systems due to a geometric jump in the action.

�iii� Analytical derivation of the explicit expression �23�
for the jump of adiabatic invariant of the symmetric ABEC
model and its numerical test �Sec. III B, Fig. 8�.

�iv� Discovery of a phenomenon in the nonlinear Landau-
Zener model: separated AT. Analytical calculation of prob-
abilities related to this tunneling �B32-34� and its numerical
test �Sec. III C, Fig. 11�.

The main result is demonstration of the usefulness of
separatrix crossing theory in a variety of BEC-related mod-
els. In order to keep the paper compact, we do not present
here a comparison with quantum many-body calculations,
but consider only mean-field models.

II. NONLINEAR TWO-MODE MODELS FOR
ATOM-MOLECULAR SYSTEMS

A. Model equations and its physical origin: Classical phase
portraits

In BEC-related mean-field models nonlinearity usually
comes from s-wave interactions �via a scattering length en-
tering the nonlinear term of the Gross-Pitaevskii equation

�6��. However, interesting nonlinear models arise in atom-
molecular systems, where atoms can be converted to BECs
of molecules. Even neglecting collisions and corresponding
s-wave interactions, the nonlinearity comes into play from
the fact that two atoms are needed to form a molecule.

We consider a Hamiltonian system with the Hamiltonian
function

H = − ����w + �w2 + �1 − w��1 + w cos � , �4�

where �=�t, �	1. Several systems can be described by the
model �4�, in particular coupled atomic and molecular BECs
�35� and a gas of fermionic atoms coupled to molecular
BECs �26–28�. Let us briefly discuss these systems.

In �35�, a system of coupled atomic and molecular con-
densates was considered using a generalization of the Bloch
representation for the two-mode system. The quantum

Hamiltonian of the system is Ĥ= 

2 a†a+ �

2 �a†a†b+b†aa�,
where a† and a are the creation and annihilation operators of
the atomic mode, while b† and b are the creation and anni-
hilation operators of the molecular mode. The two modes are
supposed to be coupled by means of a near-resonant two-
photon transition or a Feshbach resonance, with a coupling

frequency � and detuning 
. Introducing the operators L̂x

=�2 a†a†b+b†aa
N3/2 , L̂y =�2 a†a†b−b†aa

iN3/2 , and Lz= 2b†b−a†a
N , Heisenberg

equations of motion in the mean-field limit lead to a dynami-
cal system for the rescaled components of the generalized
Bloch vector: ṡx=−�sy, ṡy =−

�2
4 �sz−1��3sz+1�+�sx, and

ṡz=−�2sy, where the rescaled detuning is �=
 / ��N��,
while sx,y,z are the expectation values of Lx,y,z �sz=1 corre-
sponds to the all-molecule mode; N is the number of atoms�.
Exactly the same dynamical system arises in the degenerate
model of fermionic atoms coupled to BECs of diatomic mol-
ecules �26�. Indeed, using a similar approach in �26� an
analogous system of equations was obtained:

u̇ = ����v ,

v̇ = − ����u +
�2

4
�w − 1��3w + 1� ,

ẇ = �2v , �5�

where w is the population imbalance between the all-atom
and all-molecule modes, u and v are real and imaginary parts
of the atom-molecule coherence, and � is the rescaled detun-
ing from the resonance. These equations are equivalent to the
Hamiltonian equations of motion of the Hamiltonian system
�4� with �=0 �27�. The variable � canonically conjugated to
w is related to the old variables as �=arctan�v /u�. The all-
atom mode now corresponds to w=1, while the all-molecule
mode to w=−1. Sweeping through Feshbach resonance from
fermionic atoms to Bose molecules can be described by the
Hamiltonian �4� with �=0 and � slowly changing from large
positive to large negative values. In both systems �atom-
molecule BECs and degenerate fermionic gas coupled to
BECs of molecules� mean-field collisional interactions were
neglected so far. The case ��0 in the Hamiltonian �4� cor-
responds to inclusion of the s-wave scattering interactions.
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Recently, in �43� a more general quantum Hamiltonian de-
scribing the coupling between atomic and diatomic-
molecular BECs within two-mode approximation was con-
sidered:

H = UaNa
2 + UbNb

2 + UabNaNb + �aNa + �bNb + ��a†a†b

+ b†aa� , �6�

where a† is the creation operator for an atomic mode while
b† creates a molecular mode; parameters Ui describe S-wave
scattering: atom-atom �Ua�, atom-molecule �Uab�, and
molecule-molecule �Ub�. The parameters �i are external po-
tentials, and � is the amplitude for the interconversions of
atoms and molecules. Na and Nb are populations of the
atomic and molecular modes, correspondingly. In the limit of
large N=Na+2Nb, the classical Hamiltonian was obtained:

H = �z2 + 2
z + � + 2�1 − z�1 + z�cos�4�/N� , �7�

where

� =
�2N

�
�Ua/2 − Uab/4 + Ub/8� ,


 =
�2N

�
�Ua/2 − Ub/8 + �a/2N − �b/4N� , �8�

� is the phase difference between the modes, and z is the
difference in populations. It is not difficult to transform the
Hamiltonian �7� to the form �4� denoting z=−w and intro-
ducing a new time variable t�=4t /N to get rid of the 4/N
multiplier in the last term of Eq. �7�. The term � is not
important for dynamics. Therefore, the Hamiltonian �4� de-
scribes coupled atomic-molecular BECs �with s-wave inter-
actions� in the mean-field limit. Sweeping through Feshbach
resonance can be modeled now by changing � and keeping �
fixed in the Hamiltonian �4�. The self-trapping phenomenon
in the model discussed in �43� allows us to predict qualita-
tively a new effect—that is, the nonzero remnant fraction in
the adiabatic passage through the resonance; we do not

present a detailed quantitative analysis of the model in the
present paper, but note that it may provide an alternative
explanation of the finite conversion efficiency at the Fesh-
bach resonance passage within the mean-field approxima-
tion. Similar to the approach of �26� mentioned above,
s-wave interactions within molecular BECs can be included
in the model of the fermionic-atom–Bose-molecule system
via the same coefficient ��0 in �4�.

Phase portraits with �=0 �case I� and different values of �
are given in Fig. 1. Phase portraits with some constant �
�0 �case II� and different values of � are given in Fig. 2.
The phase portraits for case I were analyzed in detail in �27�.
The dynamics can also be visualized using the variables u, v,
and w of the system �5�. The latter system possesses an in-
tegral of motion, u2+v2− 1

2 �w−1�2�w+1�=0, defining the
generalized Bloch sphere �see Fig. 4�. The important prop-
erty of the generalized Bloch sphere is the singular �conical�
point at �0,0,1�. As described in �27�, the points �0,0 , ±1� are
represented by the segments w= ±1 in the Hamiltonian phase
portraits. Nevertheless, it does not mean that all points of
either segment are equivalent. As described in �27,28�,
saddle points appear on the segment w=1 at certain values of
the parameter �. This drastically influence the dynamics in
the vicinity of w=1. Let us briefly recall the description of
the phase portraits previously given in �27�.

If ���2, there is only one stable elliptic point on the
phase portrait, at �=0 and w not far from −1 �see Fig. 1�a��.
At �=�2 a bifurcation takes place, and at �2���0 the
phase portrait looks as shown in Fig. 1�c�. There are two
saddle points at w=1, cos �=−� /�2 and a newborn elliptic
point at �=�. The trajectory connecting these two saddles
points separates rotations and oscillating motions, and we
call it the separatrix of the frozen system �what is most im-
portant is that the period of motion along this trajectory is
equal to infinity�. At �=0 on the phase portrait the segment
w=−1 belongs to the separatrix �Fig. 2�d��. At 0����2 the
phase portrait looks as shown in Fig. 2�e�. At �=−�2 the
bifurcation happens, and finally, at large positive values of �,
again there is only one elliptic stationary point at �=� and w
close to −1.

FIG. 1. Phase portraits of the Hamiltonian �4� with �=0. From left to right: �=10, �2, 1, 0, −1, −�2, −5, −50. Stars �bold dots�: unstable
�stable� fixed points. See detailed discussion in �27,28�
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Let us introduce the action variable. Consider a phase
trajectory on a phase portrait frozen at a certain value of �. If
the trajectory is closed, the area S enclosed by it is connected
with the action I of the system by a simple relation S=2�I. If
the trajectory is not closed, we define the action as follows. If
the area S bounded by the trajectory and lines w=1, �=0,
�=2� is smaller than 2�, we still have S=2�I. If S is larger
than 2�, we put 2�I=4�−S. Defined in this way, I is a
continuous function of the coordinates.

How does the process of Feshbach resonance passage
happen in terms of the classical portraits of Fig. 1? Suppose
one starts with w�0�=w0�1 and ��0��1 �physically, it
means that almost all population is in the atomic mode, but
there is small initial molecular fraction�. In the phase portrait
of the unperturbed system the corresponding trajectory looks
like a straight line �Fig. 1�a��. The initial action of the system
approximately equals 1−w0. For example, assume that the
area S* within the separatrix loop in Fig. 1�c� �corresponding
to �=�*=1� is equal to S*=2�I0=2��1−w0�. When, as �
slowly decreases, the trajectory on an unperturbed phase por-
trait corresponding to the exact instantaneous position of the
phase point �w�t� ,��t�	 slowly deforms, but the area bounded
by it remains approximately constant, the action is the ap-
proximate adiabatic invariant far from the separatrix �10�. As
� tends to �*, the form of the trajectory tends to the form of
the separatrix loop in Fig. 1�c�. The phase point is forced to
pass near the saddle point at the w=1 segment many times.
Since the area S within the separatrix loop slowly grows,
approximately at the moment �=�* when ���*�=�* separa-

trix crossing occurs, and the phase point changes its regime
of motion from rotational to the oscillatory around the ellip-
tic point inside the separatrix loop. Then, it follows this el-
liptic point adiabatically �as no separatrix crossings occur
anymore�. The elliptic point reaches w=−1 at large positive
�. The value of the population imbalance tends to some final
value w=wf. The action variable at large � is approximately
equal to 1+w. We see that in the adiabatic limit the sign of
the population imbalance is reversed, w0=−wf. A nonadia-
batic correction to this result arises due to the separatrix
crossing and is discussed in detail in the next paragraph.

In case II the phase portraits have richer structure �Fig. 2�.
With ��0, another saddle point can appear at �=� provided
���c=− 1

23/2 . The appearance of this saddle point can be un-
derstood from a graphical solution of the equation �see also
�43��

2�w − � = −
3w + 1

2�w + 1
. �9�

As � is decreased, the line y�w�=2�w−� goes up and crosses
the curve determined by the right-hand side �rhs� of �9� �Fig.
3�. Two points of intersection represent the saddle point
�which moves to w=1 as � is decreased further� and the
elliptic fixed point which moves to w=−1. As the saddle
point reaches the w=1 segment, another bifurcation occurs
and the saddle point “splits” into two saddle points �similar
to those in Fig. 1� that move apart from �=� along the
segment w=1 and disappear at �=0.

FIG. 2. Phase portraits of the Hamiltonian �4� with ��0 ��=−0.5�. From upper left to bottom right �a�–�l�: �=5.0, 1.0, 0.53, 0.5, 0.45,
0.44, 0.4, 0, −0.5, −2.2, −5, −50. In �c�–�f�, the separatrix divide phase portraits on three domains G1,2,3 �G2 is adjacent to the segment w=1,
G1 is adjacent to w=−1, G3 is the loop in between�. Starting with small initial action at w
1, a phase point undergoes a geometric jump in
the action in addition to a dynamical jump. This leads to analog of nonzero AT and finite conversion efficiency in the adiabatic limit.
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In Sec. II B the dynamical change in the action in the case
�=0 is considered in detail, while Sec. II C briefly discusses
the case ��0 �geometric jump�.

B. Case I: Negligible mean-field interactions, �=0, dynamical
change in the action at the separatrix crossing

Consider in greater detail the passage through the separa-
trix in Fig. 1 described in the previous subsection. At large
positive �, 1−w is proportional to the classical action, while
at large negative � action is proportional to 1+w �see also
Fig. 4�. In the adiabatic limit, w reverses its sign due to
passage through the resonance: the final and initial values of
w are related as wf =−win. Calculating the change in the ac-
tion due to separatrix crossing �Refs. �27,28��, one obtains
the nonadiabatic correction to this adiabatic result. It scales
linearly with � if the initial population imbalance slightly

deviates from 1 �i.e., the initial molecular fraction is not very
small�.

As the trajectory nears the separatrix due to a slow change
�of order �� in the parameter, the action undergoes oscilla-
tions of order of �. Each oscillation corresponds to one pe-
riod of motion of the corresponding trajectory in the unper-
turbed system. In the vicinity of the separatrix, the period of
motion grows logarithmically with energy difference h be-
tween energy level of the unperturbed trajectory and the en-
ergy on the separatrix �so as h tends to 0, the period of
motion tends to infinity�. As a result, the “slow” change of
the parameter becomes “fast” as compared to the period of
motion: a breakdown of adiabaticity happens; oscillations of
the adiabatic invariant grow and at the crossing its value
undergoes a quasirandom jump �Fig. 5�.

According to the general theory, it is not enough to con-
sider dynamics of the action variable. One introduces the
improved adiabatic invariant J= I+�f�w ,� ,�� �see Appendix
A for a brief description of the adiabatic and improved adia-
batic approximations and the general formula for J�. The
improved adiabatic invariant is conserved with better accu-
racy: far from the separatrix, it undergoes very small oscil-
lations of order �2. At the separatrix crossing, it undergoes
jump of order �.

We illustrate this behavior in Fig. 5. Figures 5�a� and 5�b�
give the dynamics of the action �adiabatic invariant� I. It is
clearly seen that before and after separatrix crossing it oscil-
lates around different mean values, but the jump in action is
of the same order as its oscillations close to the separatrix.
Figure 5�c� presents the time evolution of the improved adia-
batic invariant. The jump in J is much more pronounced
�although it is possible to express the improved adiabatic
invariant in the elliptic functions, we choose to calculate it
numerically according to the definition given in Appendix
A�.

Now, at large ��� not only the action I coincides with the
value of 1− �w�, but also the improved adiabatic invariant J
coincides with I. Therefore, calculating the change in the
improved adiabatic invariant J, we obtain the change in the
action and change in the value of 1− �w� due to the resonance
passage. For the case of small initial action I, the change in
action was calculated in �27� according to the general
method of �10�. The formula is

2�
J = − 2
��*

�2 − �*
2

ln�2 sin ��� , �10�

where � is the rate of change of the area within the separa-
trix loop: �= dS

d� �note that the rate does not depend on ��; �
is the pseudophase: �= �h0 /���, where h0 is the value of the
energy at the last crossing the vertex bisecting the angle be-
tween incoming and outgoing separatrices of the saddle point
C outside the separatrix loop �see Fig. 1�c��. Similar calcu-
lations were done in �20�. The formula can be further sim-
plified by expressing � via ��

�� ���. Indeed, the area within
the separatrix loop is S���=2��2−1

1 dw��−arccos� �
�1+w

��. We
are interested in the derivative of S��� over �. Differentiating
the above integral over the parameter �, one obtains

FIG. 3. Graphical solution of Eq. �9�. The line y�w�=2�w−�
crosses the curve y�w�=− 3w+1

2�w+1
at two points �provided 2�

�max�y��w�	=−1/�2�, one of the points corresponding to the un-
stable fixed point on the phase portraits of Figs. 2�c�–2�f�, while the
other to the stable elliptic point at �=�. As � decreases further, the
unstable fixed point moves to w=1.

FIG. 4. �Color online� The Bloch sphere corresponding to
ABEC models and the generalized Bloch sphere corresponding to
AMBEC models �the surfaces u2+v2=1−w2 on the left and u2

+v2= 1
2 �w−1�2�w+1� on the right�. At large detuning, near w=1,

the area within a trajectory on the generalized Bloch sphere is pro-
portional to u2+v2��1−w�2=�2, while on Bloch sphere the area is
proportional to u2+v2�2�1−w�=2�. Note, however, that the ac-
tion variable in either case is proportional to 1−w. Action is related
to the area on the Hamiltonian phase portraits which is approxi-
mately equal to 1−w for the corresponding trajectory; see �27,28�.
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S���� = 4�2 − �2, � = S����
��

��
= S������. �11�

Therefore, the formula �10� is simplified to


J = −
4���

�
ln�2 sin ��� . �12�

We carefully checked numerically the behavior of jumps
in the action predicted by formula �12�; see Fig. 6. Figure
6�a� demonstrates scattering at the separatrix crossing: the
bunch of trajectories with various �but close� initial condi-
tions undergoing jumps of the improved adiabatic invariant
at separatrix crossing. Figures 6�b� and 6�c� demonstrate the
� dependence of jumps of the improved adiabatic invariant.
For several values of �, a bunch of 80 trajectories with close
initial conditions was calculated, and the dispersion of ac-
tions due to separatrix crossing was calculated, which scales
linearly with �2 �i.e., �2=K�2�. Note that from the formula
�12� it is possible to determine not only the linear power law,
but also the corresponding coefficient of proportionality, K.
The theory predicts a uniform distribution of �; therefore the
dispersion of jump in the action can be calculated as

�2 = 16�2����2�−2

0

1

ln2 2 sin ��d� =
4�2����2

3
. �13�

For numerical calculations, we used a linear sweeping of
�; therefore, the predicted dispersion is �2=4�2 /3. The pre-
dicted coefficient 4 /3 can be compared with the slope in
Figs. 6�b� and 6�c�. For relatively large � �Fig. 6�b��, the
correspondence is not very good, but when we decreased the
value of �, we obtained K�1.348 which is in good corre-
spondence with the theoretically predicted K=4/3�1.333.
We reveal also a high sensitivity of the jump of the adiabatic
invariant on initial conditions �Fig. 6�d��, which is the cause
of uniform distribution of � �10�. We therefore checked al-
most all qualitative and quantitative aspects of the destruc-
tion of adiabatic invariance at separatrix crossings in that
model. Let us finally mention the main steps in obtaining the
formula.

�i� Linearization around the saddle point in the frozen
system and derivation of a approximate formula for the pe-
riod of motion T along the trajectory with energy h. The
period depends logarithmically on h and is inversely propor-
tional to the square root from the Hessian of the Hamiltonian
in the saddle point �determinant of the matrix of second de-
rivatives�.

�ii� Obtaining the action variable I from the period T us-
ing the formula T=2��I /�h.

�iii� Calculation the function f at a point of the vertex
bisecting the angle between incoming and outgoing separa-
trices of the saddle point �Fig. 1�c��. It is proportional to �
�for details, see �10��.

�iv� “Slicing” the exact trajectory on parts �corresponding
to “turns” in the unperturbed system� by the bisecting vertex
and constructing a map �n, Jn→�n+1, Jn+1 using the analysis
described above ��0 is the moment of last crossing of the
vertex before the separatrix crossing, �−1 is a previous mo-
ment of crossing the vertex, etc., and Jn is value of the im-
proved adiabatic invariant at �n�. Summation of the changes
of the adiabatic invariant at each turn leads to the formula
�12�.

See Refs. �27,28� for further details.

FIG. 5. Time evolution of the adiabatic invariant �action� I and
the improved adiabatic invariant J in the model �4� with �=0.
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C. Case II: Condensates with interactions, �Å0, analog of
nonzero adiabatic tunneling

Let us briefly consider the model with ���c=− 1
23/2 . Sepa-

ratrix crossing happens via another scenario here �according
to the motion of the fixed points described in Sec. II A�. We
give only a qualitative discussion of a possible new phenom-
enon. We plot the phase portraits at different � and fixed � in
Fig. 2. Now, as � is decreased, three domains G1,2,3 appear in
the phase portrait at certain �=�* as a result of the first bi-
furcation. Shortly after the bifurcation �see Fig. 2�c�� the
separatrix consists of two “loops:” the upper G2 �adjacent to
w=1 line�, which area S2��� decreases from S2��*� to zero as
the unstable fixed point goes towards w=1, and the bottom
G3, whose area S3��� increases from zero; G1 is the “outer”
domain adjacent to w=−1.

In the case where the initial action I0 of a phase point is
sufficiently small �2�I0�S2��*��, the phase point resides in
the G2 domain when the separatrix emerges �without any
separatrix crossing; see Fig. 2�c��. In the case where 2�I0 is
larger than the area S2 of the domain G2 at the moment of
separatrix creation, the phase point occupy G1 at this mo-
ment. Consider the former case—i.e., small initial action. As
� evolves, S2 decreases, while S3 grows. When S2�t� becomes
equal to 2�I0, separatrix crossing occurs and the phase point
is expelled to the G1 domain and then almost immediately to
the G3 domain �say, in Fig. 2�f��. It is easy to see that the
phase point acquires a large action due to the geometric jump
in the action when entering G3, so in the end w will deviate
from the all-molecule mode w=−1 considerably (the geo-
metric jump is equal to �S3��**�−S2��**�� /2�, where �** is

FIG. 6. Scattering at the separatrix crossing. �a� Bunch of trajectories with various �but close� initial conditions undergoing jump of the
improved adiabatic invariant at separatrix crossing. Trajectories are mixed due to the jumps. �b� � dependence of magnitude of jump of the
improved adiabatic invariant. For every value of �, we calculated a bunch of 80 trajectories from �=10 to �=0. Initial values of w were
chosen to be equidistantly distributed in the interval �0.96,0.96+1.5��. The theory predicts a quasirandom jump of the improved adiabatic
invariant, the magnitude of which scales linearly with �. We calculate the mean value � of the squared change in the improved adiabatic
invariant, which turns out to scale perfectly linearly with � �accordingly, the dispersion �2 scales linearly with �2�. �c� The same as in �b�,
but with smaller values of � and initial values of action. We calculated slope of the line ���� taking into account the four points with the
smallest values of � and get the value k�1.1614, which is in good correspondence with theoretical prediction of �4/3�1.15; for larger
values of �, the correspondence worsens: k�1.015 when taking into account all points. �d� High sensitivity of the jump of the adiabatic
invariant on initial conditions. Calculations for �=0.0004 are presented. Initial values of w for 100 trajectories were uniformly distributed in
the tiny interval �w0 ,w0+1.5��. Change in the improved adiabatic invariant was calculated �
J=J��=0�−J��=10��. It is seen that a tiny
change in the initial conditions results in a large variance of the jump of the action. Trajectories arrive at the separatrix with different values
of the pseudo phase �. Maxima in the figure correspond to �=0 and �=1. The formula for the jump of the adiabatic invariant predicts a high
increase in the value of the jump when 
���� nears 0. In the very vicinity of �=0,1 the formula is not working �the predicted jump diverges
while the calculated jump is finite�; however, the measure of the exceptional initial conditions leading to �=0,1 is very small �10�.
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the moment of the separatrix crossing). This is in some sense
analogous to the nonzero AT discussed in �24,25� and in Sec.
III of the present paper. One might try to explain the sizable
remnant fraction after the adiabatic Feshbach resonance pas-
sage as the geometric jump in the action due to the self-
trapping effect of s-wave interactions. This, however, re-
quires further investigation: while calculation of the
geometric jump in action is trivial, the dynamical jump is not
so easy to calculate in this geometry. So far, we just suggest
a possible new phenomenon in the model; a detailed discus-
sion will be given elsewhere.

III. NONLINEAR TWO-MODE MODEL FOR TWO
COUPLED BECs

A. Model equation and its physical origin: Phase portraits

We consider the Hamiltonian �“nonlinear two-mode
ABEC model”�

H = − �w +
�w2

2
− �1 − w2 cos � . �14�

There are many systems in BEC physics that are described in
the mean-field limit by the Hamiltonian �14�. It has been
used to model two coupled BECs �BEC in a symmetric
double well in case �=0� �23�. The model with ��0 is
equivalent to nonlinear Landau-Zener model, which appears,
in particular, in studying BEC acceleration in optical lattices
�24,25�.

The theory of nonlinear Landau-Zener tunneling was sug-
gested in �24,25�. However, only the case of zero initial ac-
tion was considered. In particular, it is said in �25� that adia-
baticity is broken when “fixed points collide.” In the case
where the initial action is not zero, adiabaticity is broken
before that: it is broken when separatrix crossing occurs.
Therefore, it is necessary to involve the theory of separatrix
crossings in consideration of these models.

It is worth mentioning that for BECs in a symmetric
double well, there exists also an improved two-mode model
�38�, where the term cos 2� is added:

H = A
z2

2
− B�1 − z2 cos � +

1

2
C�1 − z2�cos 2� , �15�

where the parameters A ,B, and C are determined by overlap
integrals of the mode functions. Usually, the cos 2� term is
small and can be omitted. Then, the improved model Hamil-
tonian can be reduced to Eq. �14� with �=0 �still, the coef-
ficients are determined more accurately in the improved
model�. The original model is derived for the case of con-
stant parameters. One may wonder if it is working in a time-
dependent situation. It is not difficult to demonstrate that for
slowly changing parameters one can use the same model,
with parameters of the Hamiltonian slowly changing in ac-
cordance with the “instantaneous” model. For simplicity, let
us demonstrate this using the improved two-mode model
�38� as an example. The order parameter in a two-mode ap-
proximation is

��x,t� = �N��1�t��1�x� + �2�t��2�x�� ,

�1,2�x� =
�+�x� ± �−�x�

�2
, �16�

where �± satisfy the stationary GP equation

�±�± = −
1

2

d2�±

dx2 + Vext�± + g��±�2�±. �17�

The variables of the classical Hamiltonian are defined as

z�t� = ��1�t��2 − ��2�t��2, ��t� = arg �2�t� − arg �1�t� .

�18�

Substituting Eqs. �16� and �17� into the time-dependent GP
equation, one gets �38�

i
d�1�t�

dt
��+ + �−� + i

d�2�t�
dt

��+ − �−�

= �±��1�t� ± �2�t����± − gN��±�2��±

+
gN

2
�±��±

3P± + �±
2��Q±� , �19�

where P±, Q± are functions of �1, �2 �see �38��. From these
equations, one get the equations of motion for �1, �2 �Eq.
�13� from �38��:

i�̇� = �F + A����2 −

�

4
����

*��� + �−

�

2
+

��

4
����2

+ C��
* �����, �20�

which can be rewritten as a Hamiltonian equation of motion
of the corresponding classical pendulum �F, A, C, 
�, 
�
are functions of mode overlap integrals and energies �±�.
Considering time-varying parameters, we introduce the in-
stantaneous mode functions �±�x , t�. If we keep the two-
mode expansion of the order parameter, then it is not difficult
to show that additional terms coming from the time depen-
dence of the mode functions ���+

��+

�t dr, ��+
��−

�t dr, etc.� are
strictly zero due to symmetry and normalization conditions.
Complications can arise only from excitation of other modes
�if we would allow, say, four-mode expansion�. However, we
do not consider this question here. Even in the two-mode
approximation the nonadiabatic dynamics is nontrivial, and it
comes purely from the nonadiabatic behavior of classical ac-
tion. Phase portraits of the model �14� with �=0 are given in
Fig. 7. We are interested only in the supercritical case here.
Separatrix crossings and corresponding changes in the action
are discussed in Sec. II B. The case ��0 �NLZ model� is
discussed in Sec. II C, where we present the phenomenon of
separated AT.

B. Case I: Symmetric double well, �=0

We suppose initially that the system is in the oscillating
regime of complete tunneling oscillations �domain G3� and
then, due to a slow change of parameters, is switched into the
self-trapped regime. Two different probabilistic phenomena
take place at the crossing: a quasirandom jump in the action
and probabilistic capture.
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Consider the probabilistic capture: there are two domains
G1,2 for the self-trapped regime in the phase portraits: in the
first �upper� w�0 and in the second �bottom� w�0. In
which of these two domains will the phase point be trapped
�in other words, in the left or the right well�? The trapping in
either of the domains is also very sensitive to initial condi-
tions; in the limit of small �, the trapping is a probabilistic
event. For the symmetric case, the probability to be trapped
in either well is exactly 1/2. However, for the asymmetric
well the answer is not so straightforward. It is determined by
some integrals over the separatrix at the moment of switch-
ing �general theory exists; see �10��.

As for the first phenomenon �jump in the action�, at the
moment of switching, destruction of adiabaticity happens in
the sense that the adiabatic invariant undergoes a relatively
large jump of order of �� �very similar to that discussed in
the Sec. II�. If we then slowly bring the parameters back to
the initial values, the adiabatic invariant will be different.

The formulas for the action-angle variables are cumber-
some. In fact, to calculate change in the action, it is not
necessary to have formulas for the action-angle variables.
The jump is determined by local properties of the Hamil-
tonian near the separatrix: the area of the separatrix loop and
the Hessian of the unstable fixed point �10�. As a result, the
formula for the jump of the action is simpler than expres-
sions for the action itself. Suppose ��2 so that the phase
portrait looks like in Fig. 7�b� and we start from the regime
of complete oscillations. Slowly changing �, we can switch
to the self-trapped regime. The expression for the area of the
separatrix loop is easy to calculate:

S���/4 = b + arcsin b, b =
2�� − 1

�
. �21�

The Hessian of the Hamiltonian in the unstable fixed point
can be calculated as D���=−��−1�.

Let us define

d��� � 1/�− D��� . �22�

We calculated jump of the action according to the general
method as


J = −
1

2�
�d*�* ln�2 sin����� = �

4��

��2 ln�2 sin����� ,

�23�

where � is the pseudophase corresponding to the first cross-
ing of line �=� in the G1,2 domains, d* is value of d at the
moment of crossing this line, and values of � and �� are also
taken at this moment.

We checked this formula numerically. A set of 100 phase
points with initial conditions being distributed in a small �of
order �� interval far from the separatrix was chosen. Then,
the bunch of trajectories in the system with slowly changing
parameter was calculated. For each trajectory, values of �
and 
J �change in the improved adiabatic invariant� were
determined. From numerically determined �, the theoretical
prediction for change in the action 
J was calculated and
compared with numerically determined 
J. Results are in the
Fig. 8; the correspondence between numerical results and
analytical prediction is perfect. In the same calculations,
mechanism of quasirandom division of phase flow was veri-
fied: exactly one-half of the phase points from the considered
set were captured in the upper domain G1, and the other half
were trapped in the lower domain G2. This is a purely clas-
sical phenomenon, the sound example of probabilistic phe-
nomena in dynamical systems �10,48�.

C. Case II: Asymmetric double-well and nonlinear
Landau-Zener model, �Å0

Consider sweeping value of � from large positive to large
negative values in Fig. 9 �see also �24,25��. In the case �
�1, only two fixed points exist at �=0,� �P2, P1 corre-
spondingly�. As � changes from �=−� to �= +�, P1 �corre-
sponding to the lower “eigenstate”� moves along the line �
=� from the bottom �w=−1� to the top �w=1�; the other
point P2 �corresponding to the upper “eigenstate”� moves
from the top to the bottom. In the case ��1, two more fixed
points appear in the window −�c����c, �c= ��2/3−1�3/2.
We concentrate on this, “above-critical” case. The new
points lie on the line �=�, one being elliptic �P3� and the
other hyperbolic �P4�. Again, it is convenient to use graphi-
cal solution �Fig. 10� to visualize the appearance and disap-
pearance of the fixed points. It is stated in �25� that a colli-
sion between P1 and P3 leads to nonzero AT from the lower
level to the upper level and the tunneling probability in the

FIG. 7. Phase portraits of the two-mode ABEC Hamiltonian with �=0. From left to right �a�, �b�, �c�, �d�: �=20,2.4,1.2,0.8. As �
decreases, separatrix loop grows until �=2 where it changes its configuration, and at �=1 it disappears. On the other hand, by increasing �
it is possible to switch from regime of complete oscillations �domain 3� to the self-trapped regime �domain 1 or 2�. The unstable fixed point
do not move: it is either at �0,0� or absent.
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adiabatic limit is obtained by calculating phase space area
below the “homoclinic trajectory” �which is the limiting case
of the separatrix with S3=0�—i.e., as the geometric jump in
the action. In the zeroth-order approximation, this approach
is correct �if the initial action is zero or very small�. It is very
important that we can adopt the general theory of separatrix
crossings to the case of this model with nonzero initial action
�corresponding to initially excited system�. In this case de-
struction of adiabaticity happens before collision of the phase

points. The initial trajectory is almost a straight line, so the
initial action is equal to w+1 in the case where we start close
to w=−1 or 1−w in the case where we start close to w=1.
Consider the former case. Let the initial action I0 �i.e., value
of w+1 in Fig. 9�a�� be equal to the area of the separatrix
loop in Fig. 9�g�. The phase point is oscillating around
slowly moving P1 point until the area of the separatrix loop
S1��� becomes equal to 2�I0 at some moment �=�*, where
separatrix crossing occurs. The action undergoes a geometric
jump (which is simply �S3��*�−S1��*�� /2�). This geometric
jump is the analog of the AT probability discussed in �24,25�
for the case of zero initial action. The geometric jump is
accompanied by a dynamical jump similar to that discussed
in Secs. II and III B. The dynamical jump is small �of order
of �� as compared to the geometric jump. But conceptually it
is very important: only the dynamical jump leads to destruc-
tion of the adiabatic invariance in the model. Indeed, if we
reverse the change in �, the phase point will return to its
initial domain and the geometric jump will be completely
canceled. However, dynamical jumps will not be canceled,
and at multiple separatrix crossings they lead to slow chao-
tization �see, for example, �19��. Formulas for the dynamical
jumps in the asymmetric case are more complicated, as there
are terms of order � and � ln �. However, the probabilistic
capture in this case is very much different. Consider the
phase portraits in Figs. 9�f� and 9�g�. Suppose that not only
�, but also � is changing. At the moment of crossing, the area
S3 is diminishing, while the areas S1,2 can behave differently
depending on the evolution of the parameters. Suppose both
S1,2 are increasing: �1,2�0, �3�0. Denote as l1,2 the parts
of the separatrix below and above the saddle point, corre-
spondingly. There is phase flow across l2 from the domain G2
to G1 and across l1 from G3 to G2. The latter flow is divided
quasirandomly between G2 and G1: the phase point leaving
G3 can remain in G2 or be expelled to G2. This is “deter-
mined” during the first turn around the separatrix. After that,
the particles are trapped either in G1 or G2. The probability
for either event can be calculated as integrals over the sepa-
ratrix parts l1,2 �10�:

P1 =
I2 − I1

I1
, P2 =

I2

I1
,

Ii��,�� = �
li

dt
�H̄

��
= �

li

dt� �H

��
−

�Hs

��
�, � = �t . �24�

Here integrals are taken along the unperturbed trajectories at
the moment of separatrix crossing �or last crossing the line
�=� before the separatrix crossing�, Hs is the �time-
dependent� value of the Hamiltonian H in the unstable fixed

point, and H̄ denotes the Hamiltonian H normalized in such
a way as to make the value of the new Hamiltonian in the
unstable fixed point to be zero. It is possible to calculate all
the integrals analytically; see Appendix B. We present a nu-
merical example in Fig. 11. A set of N=100 trajectories was
considered with initial conditions distributed in a tiny inter-
val of w and with ��0�=0 �so the initial actions were distrib-
uted in a tiny interval of order �: Ik= I0+k�I, N�I
�, k

FIG. 8. �Color online� Jump in the improved adiabatic invariant
in dependence of the pseudophase �. Solid squares, numerical re-
sults; dashed line, analytical predictions according to Eq. �23�. We
slowly changed � according to the law �=�a−�b cos �t, with �
=0.001, �a=15, �b=10. We took a set of 100 phase points with
different but very close initial conditions: wi=0, �i are distributed
along an interval of order of � at the time �=�t=0. We propagate
the bunch of trajectories until the time �=� �so all the points
changed its regime of motion from complete oscillations to the
self-trapped mode�. For each point, the value of � and change in the
improved adiabatic invariant 
J were determined numerically;
then, the analytical prediction for the change in the improved adia-
batic invariant 
J��� was calculated according to Eq. �23�. The
numerical and analytical results shown in �a� are almost indiscern-
ible. In �b� an enlarged part of the same plot is presented, where
small deviations are seen. It is also important to mention that from
100 phase points exactly 50 were trapped in the upper domain G1

and 50 in the lower G2.

UNIVERSALITY IN NONADIABATIC BEHAVIOR OF… PHYSICAL REVIEW E 76, 026218 �2007�

026218-11



=1, . . . ,N; alternatively, one can consider a set of phase point
with equal initial actions, but with distribution of phase
along 2� interval�. Both � and � were changed, so after the
separatrix crossing a phase point can be trapped either in G1
or G2. From the set of 100 points, 87 were trapped in G1,
while 13 were trapped in G2. The difference between the
final actions of these two subsets is approximately I0, the
initial action of points in the bunch. The probability of 87%
is in good correspondence with the theoretical prediction,
which gives P2=86.998 for the probability of capture into
the domain G2. Possible experimental realization of this phe-
nomenon is again BEC acceleration in optical lattices, but
with simultaneous modulation of the lattice potential depth.

IV. CONCLUSION

We discussed destruction of adiabatic invariance in sev-
eral nonlinear models related to BEC physics. We especially
concentrated on the cases that have not been considered in
the corresponding papers on BEC dynamics yet: that is,
when the initial action is not zero.

We found that the general theory of adiabatic separatrix
crossings works very well in the considered models. Two

aspects of destruction of adiabatic invariance were consid-
ered: quasirandom jumps in the approximate adiabatic in-
variants and quasirandom captures in different domains of
motion at separatrix crossings.

We discussed quasirandom jumps in the approximate
adiabatic invariants in the models describing Feshbach reso-
nance passage in coupled atom-molecule BECs, BEC tunnel-
ing oscillations in a double well, and nonlinear Landau-
Zener tunneling. Comparing with previous analysis of the
above-mentioned models �25,26�, the key feature of our ap-
proach should be emphasized: the system is linearized near
the hyperbolic fixed point, not near elliptic fixed points of the
unperturbed system.

Another important class of phenomena considered here is
probabilistic captures into different domains of motion. They
were discussed for the case of BEC tunneling oscillations in
a �symmetric or asymmetric� double well and the NLZ
model with a time dependence of the nonlinearity �. Sepa-
rated AT was discovered in the latter case. We suppose it can
have experimental applications in BEC manipulations with
optical lattices. The conceptual phenomenon of probabilistic
capture was first discovered in celestial mechanics �while
studying resonance phenomena in the Solar System�. It is

FIG. 9. Nonlinear Landau-Zener tunneling: phase portraits of the two-mode ABEC Hamiltonian at different values of �. From top left to
bottom right: �=20, 3, 1.8, 1.2, 0, −1.2, −1.8, −3, −20; �=const=4.
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interesting to draw an analogy between intricate phenomena
of celestial dynamics and phenomena happening in many-
body quantum systems. Conceptual phenomena related to the
classical adiabatic theory �which includes both adiabatic in-
variants and the adiabatic �geometric� phases� have recently
become an important trend of research in the highly interdis-
ciplinary BEC physics field �see �28,58–60��. We hope the
comprehensive analysis presented in this paper adds an im-
portant contribution to the understanding the nonlinear dy-
namics of Bose-Einstein condensates.

Note added in proof. Recently, several papers have ap-
peared �61� that have studied the classical phenomena de-
scribed here. It is necessary to mention a work �62� where a
careful discussion of the self-trapping effect was given.
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APPENDIX A: ADIABATIC AND IMPROVED ADIABATIC
APPROXIMATIONS

To consider the change in the action during a separatrix
crossing, it is necessary to introduce the improved adiabatic
invariant J in addition to the ordinary action variable I. The
improved adiabatic approximation is discussed in �10�.

Let I= I�w ,� ,��, �=��w ,� ,�� mod 2� be the action-
angle variables of the unperturbed ��=const� problem. The
“action” I�w ,� ,�� multiplied by 2� is the area inside the
unperturbed trajectory, passing through the point �w ,�� �pro-
vided the trajectory is closed; otherwise, the area of a domain
bounded by the trajectory and lines �=0,2� is calculated�.
The “angle” � is a coordinate on the same unperturbed tra-
jectory. It is measured from some curve transversal to the
unperturbed trajectories. The change �w ,��→ �I ,�� is ca-
nonical �and can be done using a generating function which
depends on ��. In the exact system �with �̇=��0� the vari-
ables I and � are canonically conjugated variables of the
Hamiltonian

H = H0�I,�� + �H1�I,�,�� , �A1�

where H0�I ,�� is the initial Hamiltonian E�w ,� ,�� expressed
in new variables, while the perturbation H1 comes from the

FIG. 10. Graphical solution of the equation −�+�w
=w /�1−w2 which gives fixed points at �=�. As � decreases, the
line goes up, and three fixed points can appear from a single one at
certain window of value of � provided ��1. The star denotes the
unstable fixed point which after the birth goes down and collides
with the stable fixed point. See corresponding phase portraits in the
next figure.

FIG. 11. �Color online� Separated AT. We took a bunch of 100
trajectories with initial actions distributed in a tiny interval of order
� �in the figure, the bottom curve �dashed� consists of 100 initial
trajectories; the two upper curves �solid line� consist of 87 and 13
trajectories, correspondingly, and represent “snapshot” of the trajec-
tories after the end of sweeping of parameters�. As parameters are
changing, the separatrix �see Figs. 9�d�–9�f�� moves down and
crosses the bunch. Due to quasirandom division of phase flow de-
scribed in the text, some of the points were captured to the G1

domain, while the other to the G2 domain. As a result, phase points
undergo different geometric change in the action. After the capture,
actions are conserved. Therefore, a phase point can acquire two
different values of the adiabatic invariant. The difference between
the values corresponds to the area of the domain G3 at the moment
of separatrix crossing; i.e., it is approximately equal to the initial
action. The question is how the initial bunch is divided, and what is
the probability for a phase point to come into either of the two
upper bunches? From the set of 100 points, 87 were trapped in the
upper bunch, while 13 in the bottom. This numerical result is in
very good accordance with the theoretical prediction for the prob-
abilities �24� and �B5�, which gives P2=86.998 �see Appendix B�.
In the case of nonzero AT considered in �24,25�, the initial bunch
would lie near the w=−1 line, and there would be only one “final”
bunch. Here, there are separated bunches, which suggested us to
introduce the terminology “separated AT.”
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time derivative of the generating function. In the case where
the angle � is measured from some straight line �=const,
one has the formula �10�

H1 =
1

�0



0

� � �E

��
− � �E

��
��d�, �0 =

�H0

�I
, �A2�

where the brackets �¯� denote averaging over the angle �.
Consider a phase point of the exact system with the initial

conditions I= I0, �=�0. The adiabatic approximation is ob-
tained by omitting the last term in Eq. �A1� and gives

I = I0, � = �0 +
1

�



0

�t

�0�I,��d� . �A3�

The improved adiabatic approximation is introduced in the
following way. One makes another canonical change of vari-
ables �I ,��→ �J ,��. The change is O���, close to the iden-
tity, and in the new variables the Hamiltonian has the form

H = H0�J,�� + �H̄1�J,�� + �2H2�J,�,�,�� , �A4�

H̄1 = �H1� = −
1

�0



0

2� �1

2
−

�

2�
� �E

��
d� . �A5�

The improved action variable can be defined as

J = J�w,�,�� + I + �u , �A6�

u = u�w,�,�� =
1

2�



0

T �T

2
− t� �E

��
dt , �A7�

where the integral is taken along the unperturbed trajectory
passing the point �w ,��, T= 2�

�0
is the period of the trajectory,

and the time t is measured starting from the point �w ,��.
Determined in this way, �u�=0. The improved adiabatic ap-
proximation is obtained by omitting the last term in Eq. �A5�
and gives

J = J0, � = �0 +
1

�



0

�t

��0�J,�� + ��1�J,���d� ,

�1 =
�F̄1

�J
. �A8�

APPENDIX B: PROBABILITIES OF CAPTURES DURING
SEPARATED AT

We change both � and � linearly in time: �=�0−�t, �
=�0−��t, �=1.5; �0=25, �0=8. We consider a bunch of N
=100 trajectories with initial conditions wk=w0+0.02�k, �k
=0 �w0=−0.8� which imply a distribution of initial actions in
a tiny interval of order �. Alternatively, one can consider
initial conditions with the same initial action, but with the
distribution along the angle variable �. In any case, from N
trajectories, approximately P2N will be captured in domain
G2, and P1N in domain G1. As a result, after sweeping the
value of � to −�, one obtains two bunches of trajectories

each closely distributed along two different values of action.
This is a new phenomenon in the context of nonlinear
Landau-Zener tunneling.

At the moment of separatrix crossing, the phase portrait
looks like shown in Fig. 9�f�. Phase flow from the domain G3
is divided between G1 and G2. It is possible to calculate
analytically the probabilities of captures in either domain.
The separatrix crosses the line �=0 at points w=wa,b, wa
�wb and the line �=� at w=ws �the unstable fixed point�.
These three magnitudes �wa,b,s� are roots of the equation

�ẇ�2 = 1 − w2 − �hs + �*w −
�*

2
w2�2

= 0, �B1�

where hs is the energy on the separatrix at the moment of
crossing and �* and �* are values of the parameters at this
moment �w=ws is the doubly degenerate root�. In other
words,

ẇ = ±�−
�*

2

4
�w − wa��w − wb��w − ws�2. �B2�

The probabilities of capture in either domain are given by

P2 =
I2

I1
, P1 =

I2 − I1

I1
,

I1,2 =
1

2
�

l1,2

dt
�H̄

��
= − ��I1,2

� +
��

2
I1,2

� = − ��

wa,b

ws

dw
w − ws

ẇ

+
��

2



wa,b

ws

dw
w2 − ws

2

ẇ
, �B3�

where lower limits of integration for I1, I2 are wa and wb
correspondingly. For value of ẇ one uses the Eq. �B2� which
makes the integrands in Eqs. �B3� simple, and one gets

�

2
I1

� = arcsin�− 2ws + wa + wb

wb − wa
� − �/2,

�

2
I1

� = �− �ws − wa��ws − wb� + �ws + �wa + wb�/2�I1
�,

�

2
I2

� = − arcsin�− 2ws + wa + wb

wb − wa
� − �/2,

�

2
I2

� = − �− �ws − wa��ws − wb� + �ws + �wa + wb�/2�I2
�.

�B4�

Therefore,

P2 =
I2

I1
=

− ���− 
 − �/2� +
��

2
�− Qs + Ws�− 
 − �/2��

− ���
 − �/2� +
��

2
�Qs + Ws�
 − �/2��

,
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 = arcsin�− 2ws + wa + wb

wb − wa
� ,

Qs = �− �ws − wa��ws − wb�, Ws = ws + �wa + wb�/2.

�B5�

In the numerical example presented in Fig. 11, ��=−1,
��=−�=−1.5; at the separatrix crossing, �*=8.386 336 9,
�*=−3.075 775 3, hs=0.355 354 4. It gives wa�
−0.923 962 8, wb�0.301 551 67, ws�−0.422 314 9. For-
mula �B5� gives P2�86.998, which perfectly corresponds to
the numerical result �87%�.
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